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Abstract. We have reported a comparative study of the relativistic and non-relativistic Landauer 
resistances (LR) of "hueMorse (TM) lattices The TM lattice treated by us consists of recrangular 
potential barriers, with their centres distributed according to TM sequence m e  purpose behind 
our study is to examine how the relativistic impact on the U( of TM lattice depends on the energy 
of the electrons and various parameten related to the TM lattice. Among other things. we find 
that the relativistic impact increases with increase in the number of baniers in the TM IaWice and 
reduction in the width of barriers 

1. Introduction 

Relativistic study of the electronic states and allied properties of aperiodic systems has 
attracted the attention of many researchers during the last decade or so. The aperiodic cases 
treated so far in this regard are disordered systems [ I 4  and quasi-periodic (QP) systems [7]. 
The primary aim of these studies was to achieve relativistic generalizations of non-relativistic 
treatments of various aspects of electron motion in one-dimensional (ID) disordered and QP 
systems and to zather thereby some knowledge about the extent of relativistic impacts on 
these aspects, quantitatively [1-7] as well as qualitatively [6]. On the whole, these studies 
[I-71 are likely to be of considerable importance with regard to electron motion in aperiodic 
systems consisting of heavy atoms. 

Compared with the relativistic study of electron motion in disordered systems, the 
relativistic study of electron motion in QP systems has received much less attention. It 
appears that the work in [7] is, so far, the only study to consider relativistic electrons in 
QP systems. This work dealt with the relativistic transmission coefficient of the Fibonacci 
lattice. The Fibonacci lattice, which is a ID version of a quasicrystal [XI, has been extensively 
studied theoretically on a non-relativistic footing as an example of QP systems [%I41 and 
has also been realized experimentally in the form of systems such as GaAs-A1As [15]. 
The exhaustive and meaningful studies of the Fibonacci lattice stimulated efforts towards 
exploration of QP systems of other types, and the system which has received considerable 
attention in this respect is the well known Thue-Morse (TM) lattice [16-24]. All studies 
reported so far about electron motion in the TM lattice have been carried out on a non- 
relativistic footing. We feel that a relativistic treatment of electrons in motion in the TM 
lattice would considerably broaden our knowledge with regard to relativistic impacts on 
electrons in QP systems, and the purpose of this paper is to report a study in this direction. 
Specifically, we have canied out a relativistic study of the Landauer resistance (LR) [25] of 
the TM lattice. 
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The study of the LR of various ID systems started to attract substantial attention during 

(i) non-relativistic electrons in disordered systems [2&28], 
(ii) non-relativistic electrons in periodic systems 1'261, 
(iii) non-relativistic electrons in the Fibonacci lattice [13]. 
(iv) relativistic electrons in periodic systems and 
(v) relativistic electrons in disordered systems [5]. 

To our knowledge, no study of the LR has so far been reported with regard to the TM 
lattice. In view of this situation and the fact that the LR provides valuable information 
about electrical conduction, we have undertaken the relativistic treatment of the LR of the 
TM lattice and also obtained the non-relativistic LR of such a lattice for comparison between 
relativistic and non-relativistic results. 

The model and some essential features of the TM lattice are discussed in section 2. 
Section 3 deals with some aspects of relativistic transfer matrices which are required for 
our relativistic treatment of the LR of the TM lattice. The derivation of the relativistic LR 
of the TM lattice and related issues are indicated in section 4. The essential aspects of 
our numerical analysis appear in section 5. Finally, a critical discussion of our results and 
findings is presented in section 6. 

the last decade or so. The cases treated so far in this regard are, broadly speaking, 

2. Model and some features of Thue-Morse lattices 

Our model consists of a system of N rectangular potential baniers, with height V, and width 
b, which are placed along a ID two-tile QP lattice. The separation between the centres of 
two consecutive barriers takes one of the two values f and g and such centres are arranged 
(figure 1) in a TM sequence which is given by [21] 

&+I = {sn,Zt n > 0 SO = {f,gl .  (1) 
- 
S, is the complement of S, obtained by interchanging f and g. Denoting the total number 
of tiles in sequences &+I and S, by G,+I and G,, respectively, we obtain 

G.+i = 2G.. (2) 

Equation (2) leads to the following result: 

G" = 2.2". (3) 

In our model, the total number N of barriers is the TM number G.. The reason why we 
choose the barrier-type potential lies in the fact that they are fairly realistic on the one hand 
and amenable to exact treatment on the other hand [5,29-311. 

- - -  - -  _-- f -  g - 9 _ f -  9 - f - f -  9 

Figure 1. Ed Ialtice: WO tiles f and g represent distances between hvo consecutive points 
characterizing the centres of two consecutive barrier% these two tiles are m g e d  in lhe t~ 
sequence. 
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3. Some aspects of relativistic transfer matrices 

As pointed out earlier, we consider a system of N rectangular potential barriers, where N 
is a M number. The barriers are placed along the X axis, with their centres at X, which 
lie on the axis of symmetry of the barriers. The ID Duac equation for the system is 

(4) 1 d 
-%tux- +mc2uz - [ E R  - W(x)l $(x) = 0 L 

where ER,  c and m are the relativistic energy eigenvalue, the velocity of light in vacuum 
and the rest mass of the electron, respectively. U, and uz are the x and z components of 
the Pauli spin matrix. 

N 
W(x) = V(x - X ” )  (5) 

I x, - $b < x < x, + Zb 

x < xn - f b  o r x  > xn +- i b .  1 

The solution of equation (4) yields the following spinor with reference to the nth barrier: 

= pa [ :] exp[ip(x - x, - +)I + 4. [ : y ]  exp[-ip(x - xn - fb) l  

x, f $b < x < x.+, - i b  (6)  

(7) 
1 

$I&) = r. [ L] exp(-rlx) + c [ -ih] exp(qx) xn - f b  < x < n, + $b 

I 
h = -(Vo - E) 

chrl 
s = E R - m c .  2 

In writing the spinors (6)-(8) we have used the following inequalities: 

s < V o < ~ + m c ~ .  
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The right-hand inequality in (13) ensures the absence of the Klein paradox. 
Introducing the (2 x 2) relativistic transfer matrix MR(n), we can obtain 

C L Roy &A Khan 

The spinors (6)-(8) must conform to the following boundary conditions: 

With the help of spinors (6H8) and (15a) and (I%), we can obtain the explicit form of 
transfer mahix MR(n) as follows: 

(MR(n))ll  = cosh(vb) + - (yZ - k)sinh(vb) exp[ip(Arn -b)l= (MR(n))& ) 
I 

(16) 
2Y J. 

(17) 
I 

( 
(MR(n) ) l z  = (-&(yz + A') sinh(vb) exp[-ip(Ax. - b)l = (MR(n));]  

AX, = X. - x.-i 

det[MR(n)] = 1. 

We now introduce another (2 x 2) transfer matrix ME with the help of MR(n) as follows: 

where 

M: = MR(N)MR(N - I)MR(N - 2). . . M(1). (20) 

The elements of Mi have the foIlowing properties: 

(M,R)Il = (MR); 

CMR),z = (M,R);, 

detM: = 1. 

By interchanging f and g in a TM sequence, we obtain the complement of this TM 
sequence. The axis of symmetry of potential barriers in this complement &shifted to&e 
new position Fn. Consequently, the matrices MR(n) and M," change to MR(n) and M:, 
respectively as follows: 

- - 
MR(n) = MR(n) with Kxn = Ax,, Ax,, = K - %I (24) 

ME = EF(N)KF(n - 1 ) .  . .W(l). (25) 
- 
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4. Relativistic Landauer resistance of the ThueMorse lattice 

We consider N potential barriers, where N is the TM number G, arranged according to 
the TM sequence. To obtain the relativistic LR of the TM lattice, we require certain entities 
related to aansfer matrices discussed in the previous section and we first indicate these 
entities. 

Using sequence (I), we obtain 

M:+] = q M f  (26) 

= M i E .  (27) 

Again trace commutative law yields 

TrM: = T r q .  

With the help of equations (20) and (25)-(28), we have 

Y," =F 
Y," = $TIM: = Re(M:),, 

Y; = ;TIM: = Re(M,R)II. 
- - - 

In the light of the elements of Mf: and q, we obtain 

With the help of equations (26), (27) and (29)-(31), we obtain the following relativistic 
dynamical trace map: 

(34) 

Equation (34) leads to the relativistic energy spectrum of an infinite periodic lattice with 

R R Z R  R Z  Y.+] = 4(Y,-,) Y,, -4(Yn-i) + 1 n 2 1. 

the periodicity &+I; the allowed energies of this spectrum satisfy the following criteria: 

lim k':l<i. (35) 
n-cc 

Using equations (26). (27), (29), (32) and (33), we can obtain the recursion relations for I: 
and as given below: 

Now, as is well known, the LR for a chain of barriers is defined as the ratio of the 
reflection coefficient to the transmission coefficient [25]. This definition means that the 
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relativistic LR is equal to the squares of the modulus of M:+l(12) for a chain of barriers 
[5]. We thus have 

pi+I is the relativistic LR for the TM sequence &+I.  Using equations (26), (27), (29)-(34), 
(36) and (37) and the fact that detM;,, = detM:+, = 1. equation (38) can be written as 

C L Roy andA Khan 

Piti IM:+i(12)12. (38) 

P"+l = 4(Yf-1)2(A: + B;) n ) l  (39) 

A: = 2(Yf - 1)[2(Y:-l)2(Yf - 1) + 11 + ($-I - (40) 

= 4Y."r:-l[r,"_,+I:-1(Yf- 1)1. (41) 

- 

- where 

4.1. Relativistic Landauer resistance for the 8-function equivalent of our model 
W i l e  studying electron motion in a I D  chain of barriers, it often appears worthwhile to 
compare the results obtained for the chain of barriers with those for the 8-function equivalent 
of this chain [30]. In view of this, we would now obtain the 8-function equivalent of pEtl. 

can be obtained, as usual, by setting Vo + W. b -+ 0, 
such that Vob = finite = 01 (say). With these conditions, we have 

i l + y Z ,  
(MRO(n))ll = cos(or/ch) - -- 

2 Y  

The 8-function limit of 

sm(or/cfi) exp(ipAx,) = (MRo(n)); ,  (42) 

sin(or/cE) exp(-ipAxJ = (MR08));1 (43) 

1 
(44) 

1 i I - y z ,  

[ 
[I Y 

(MRo(n))lz = 

m(n) = MRo(n) with = Ax". 
MRo(n) and m(n) are 8-function equivalents of MR(n) and * ( n ) .  If M;O and 
8-function equivalents of Mf and @, we have 

are 

Mfo = MRo(N)MRo(N - 1). . . MRo(l) (45) 

(46) 
- -  
M,"O = M R o ( N ) W ( N  - 1 ) .  . .W(l). 

The &function equivalent of pf+l now appears as 

,of& = 4(YfR_0,)2(A:0 + BEo) n > 1 (47) 

A:' = 2(Yfo - I)[2(Y~!,)2(Yffo - 1) + 11 + (I,"-"! - I:!1)2 
B,"' = 4 Y ~ 0 2 ~ ~ I  [E + Iff1 (Y," - l)] 
Y,R0 = fTrMf' = Re(Mfo)Il 

- where 
(48) 

(49) 

(50) 

01)  
1 

I," = Im(M;o)Il = ~NM.RO)II - (Mio);ll 

- - 
(52) 

- 1 -  
Iff0 = Im(M,Ro)II = -[(M,R0),1 - (Mp);,]. 

Y:$ = 4 ( ~ , - ~ )  Y,, 4(PnL1) + 1 n 1. 

2i 
It may be noted that the &function equivalent of (34) appears as 

(53) RO 2 RO - RO 2 
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5. Non-mlativistic Laudauer resistance of the Thue-Morse lattice 

The results of any relativistic treatment shouId reduce to the corresponding non-relativistic 
results when the velocity of light c is allowed to become infinite compared with the velocity 
of the particle under consideration. Hence, the non-relativistic LR of the TM lattice can be 
obtained, without using an &-initio treatment, by subjecting OUT relativistic results to the 
condition c -P CO. Using these situations, the non-relativistic LR of the TM lattice with 
barrier-type potentials, denoted as &+I, can be obtained as 

where 

The matrix M, is the non-relativistic equivalent of M! and it is given by 

M, = M(N)M(N - 1 ) .  . . M(1). (60) 

M(n) is the non-relativistic equivalent of MR(n). The elements of M(n) are as follows: 

1 i 
cosh(f?b) + -(k' - f?')sinh(@b) exp[ik(Ax, - b)] = (M(n));' (61) 2 0  

- 
M, is the non-relativistic equivalent of @ and it can be written as 

- 
M, = m ( N ) m ( N  - 1). . .m(l) (63) 

M(n) = M(n) with Axn = Ax,, (64) 

(65) 

- - 

2mE 2m k E- 8' = ~ ( V O  - E) Vo < E. 
h' 

E is the non-relativistic eigenenergy value and is equivalent to the entity E in the relativistic 
treatment. 

The &function equivalent p:+, of pn+l appears as 



6. Numerical analysis 

In order to elucidate the circumstances under which relativistic impacts on the LR of the 
TM lattice can become significant, we have carried out some quantitative analysis, with 
regard to the relativistic and non-relativistic LRs for both barrier-type potentials and 6- 
function-type potentials. The formulae used for barrier-type potentials are (39) and (54), 
denoting the relativistic and non-relativistic cases, respectively. The formulae for &function 
potentials are given by (47) and (66), corresponding to the relativistic and non-relativistic 
cases, respectively. For effective elucidation of the difference between the relativistic and 
non-relativistic LRS, we have computed the values of two entities defined below: 

R 
x 100 P.+I - P,+, 

A + l  
&+I 

The results or our numerical analysis are shown in  figures 2-5. 
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P N E R G Y  lev1 - 
Figure 2. Variation in the relativistic LR with energy. fm.bMh ba+-type potentials and S- 
function potentials. The parameters are as fallows: f = I A, g = 2 A, b = 0.5 A, !4 = 20 eV 
and N = 256. 

ENERGY l e v 1  - 
Figure 3. Same type of plots as in figure 3, with N = 512; the other parameters are the same 
as those in figure 2. 

I. Discussion of results and conclusions 

Figures 2 and 3 show the variation in relativistic LR with energy, for both the barrier potential 
(p,",,) and the 8-function potential (p:jl). These figures lead to the following observations. 

(i) Both p,",, and p::, show some oscillations with energy, with one peak considerably 
larger than the peaks on both sides of it. 

(ii) The peaks of p:;, are seen to occur at lower energies than those for the corresponding 
Peaks of Pf+, . 
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Figure 4. Variation ia the difference between Ihe rclativistic and non-relativistic ~ 8 s  with energy. 
All parameters are the same as those in figure 3. 
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(iii) Both p,",, and p::I increase with increase in N .  

The variations in pG+l and p:+, with energy are seen to be of the same nature 
qualitatively. There are, however, quantitative differences between the non-relativistic and 
the relativistic LRs. To see the origin of these quantitative differences, we recollect that the 
LR of our TM lattice is defined as the ratio of the reflection coefficient to !he transmission 
coefficient of the whole chain of barriers in the TM lattice. As a function of energy, 
these coefficients are quantitatively different for the relativistic and the non-relativistic 
cases. Consequently quantitative differences arise in the variations in the non-relativistic 
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and relativistic LRs with energy. 
We find it convenient to elucidate the quantitative differences between the relativistic 

and non-relativistic LRs of the TM lattice by means of figures 4 and 5. Figure 4 shows 
that both Apn+, and Ap;+] (defined in section 6) remain almost constant at low energies, 
while they show oscillations at high energies corresponding to about 12-20 eV. The peak 
values of AP;+~ in the oscillating region are seen to occur at lower energies than those 
for the corresponding peak of Ap,+l. The oscillations of Ap.+l and Ap;+, show that, at 
some energies, the relativistic LR is more than the non-relativistic LR, while at some other 
energies the reverse is the case. The oscillations of Ap.+l and in the energy interval 
1&20 eV indicates that, for this energy interval, the ranges of energies corresponding to 
substantial relativistic and non-relativistic values of the LR are not coincident. On the other 
hand, the nearly constant values of Apntl and ApP&, in the energy interval from very low 
values to about 10 eV suggest that the ranges concerned with significant relativistic and 
non-relativistic values of the LR are nearly coincident. 

Figure 5 shows the variations in Ap,+l and Ap;+, with n for a fixed energy. n is 
related to the number N of barriers as N = 2 x 2". The plots in figure 5 indicate that the 
difference between the relativistic and non-relativistic LRs increases with increasing n and, 
hence, with increasing N. Further, the increase in this difference with increasing N is seen 
to be more for the 8-function potential than for the barrier-type potential. 

To conclude, we can say that the relativistic impact on the LR of the TM lattice is quite 
substantial when 

(i) the energy of the electron is high, 
(ii) the number of the barriers in the chain is large and 
(iii) the width of the barriers is very small. 
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